
1

Darren Wershler
Bart Simon
August 2022
Digital Pedagogy Institute
v8

Rattletrap Platforms: Modded Minecraft and Digital Pedagogy

[INTRO SLIDE]

Notoriously, many of the platforms and tools we use for digital
pedagogy at the university level are *not very good*: a farrago
of poorly documented, inflexible off-the shelf packages,
conflicting plugins, and glitchy scripts that utilizes computer
resources poorly and spends nearly as much time down as up and
running. But are there pedagogical advantages to teaching with
rattletrap platforms?

[INFRASTRUCTURAL REFLEXIVITY SLIDE]

Drawing on our current research project "Material Allegories and
Minecraft" and our use of heavily modified ("modded") versions
of the game in classrooms since 2014, We argue that sometimes
rattletrap platforms and tools are *better* for teaching because
they foreground the material conditions of learning and action.
One of the explicit teaching goals of our Minecraft classes is
to create an ongoing awareness of these conditions in our
students. In our paper "The Allegorical Build," in A 2021
special issue of _Gamevironments_ titled "Revisiting Teaching
and Games," we call this awareness "*infrastructural
reflexivity* (213).

Infrastructure is a broad concept because what it describes is
messy, complex, and difficult to discern. In her foundational

2

essay “The Ethnography of Infrastructure,” Susan Leigh Star
writes that the common conception of infrastructure is of “a
system of substrates” that is “by definition invisible, part of
the background for other kinds of work [and] ready-to-hand”. As
the embodiment of standards and protocols, infrastructure is
hard to observe because it extends into and depends on other
structures, technologies, and social arrangements to which it
connects in a standardized way. Because it does not have to be
reassembled or reinvented every time a task is performed, it
really only becomes visible at moments of breakdown, lag, and
other types of failure.

The reflexivity part is both material and cognitive. Material
reflexivity is the actual feedback loop between a player and
some material aspect of the game, whether it's a deliberate
procedure, or an exploit or glitch. Cognitive reflexivity is
allegorical in that it describes the awareness of that loop in
relation to infrastructure as a condition of possibility for
learning (or collective action of some sort).

[GLITCHED GOLEM SLIDE]

To achieve infrastructural reflexivity, we don't desire to make
digital learning platforms flawless and invisible. We *want*
bugs and glitches to occur, because they foreground the material
conditions of learning and action. Rattletrap platforms defeat
consumerist expectations; they allow for failure and rethinking;
they create scenarios where genuine emergent phenomena can
unfold; and, by virtue of the fact that students need to figure
out where to turn when something goes wrong, they point to the
larger systems that position, structure and regulate activities
in the digital and physical classroom, the university and
beyond. We contend that rattletrap platforms allow for the
development of infrastructural reflexivity in students. But
first, some context.

3

Context

[MINECRAFT SPLASH SLIDE]

Despite its unpopularity with many self-identified gamers --
perhaps even because of that -- Mojang's (2009) and Microsoft's
(2014) Minecraft remains the bestselling video game in history.
With a daily active player count in 2022 between 2.8 and 3.6
million, the game is still increasing in popularity (https://
techacake.com/how-many-people-play-minecraft/), with a racially,
neurally and gender-diverse player base, with an average age of
24 (https://www.pcgamesn.com/minecraft/player-age). Because of
its ubiquity, video game critic Ian Bogost contends that the
impact of Minecraft as a cultural artifact is on par with the
personal computer itself (https://www.nytimes.com/2016/04/17/
magazine/the-minecraft-generation.html). The portion of the
Minecraft milieu on which our research focuses is the part that
makes use of independent, player-made modifications, or *mods*.

The oldest Minecraft mods appeared in mid-2010, when the game
was still in alpha development. There is substantial debate
about what those mods were, exactly, but they have always been
part of the game's history. Minecraft mods fall into two rough
categories "client-side" (affecting only the play on your
particular computer) and "server-side" (affecting all players
connected to a particular server). Generally the two types of
mods are bundled together into *modpacks* in order to create a
particular kind of game experience (we call this bundling "mod
choreography" because it requires the management of all sorts of
technical and aesthetic conflicts in order to produce a coherent
experience).

[CURSE MINECRAFT SLIDE]

4

None of this is easy. Minecraft was originally written in Java,
and provides no official support for Java modding, so modders
have had to collectively interpret the game's code over time,
write their own mods in Java, and construct programs called
launchers that coordinate and manage the mods for use in a
given game. As of August 2022, there are over 111,000 active
Java mods on CurseForge (the primary mod repository) alone
(https://en.wikipedia.org/wiki/Minecraft_modding). Remember,
these are all coded by amateurs, and they work together, and
with a given Minecraft's server's capabilities, with varying
degrees of success ... and frequent failure.

There has been a fair bit of research on Minecraft, particularly
in education. However, the bulk of this research is precisely
about the smoothness and immersiveness of the game: the idea
that students ave so much fun they forget they are *learning*.
This is the lure of gamification: the conviction that somehow
people learn best when they don’t think they are learning. We
are interested in the opposite scenario. Does software that's
barely "good enough" for teaching (i.e. affordable, accessible,
and familiar to our students), allow for emergent phenomena
unanticipated by game designers and classroom instructors alike
to occur *because of its weaknesses* ... and thus for unique
"teachable moments"? Take, for example, the case of Moloch and
the Bees.

Moloch
[LANG MOLOCH TEXT SLIDE]

The current version of our Minecraft course links the game with
a series of readings on the history and culture of modernity. In
our blocky little Minecraft world, Moloch is, literally, the
machine in the garden: an allegorical manifestation of the most
rapacious, remorseless aspects of industrial capitalism, drawn
directly from Fritz Lang's 1927 film _Metropolis_, as the sign

5

we placed on its back indicated.

[LANG'S MOLOCH SLIDE]

Since Biblical antiquity, the name “Moloch” has been synonymous
with enormous sacrifice and servility … but the moderns used it
explicitly as a metaphor for industrial capitalism. In the
Grundrisse, for example, Karl Marx writes, “money is the
hangman of all things, the Moloch to whom everything must be
sacrificed, the despot of commodities.”

[BIBLICAL MOLOCH SLIDE]

One of the reasons we included Moloch within the game was
precisely in order to make Minecraft’s heterotopic nature more
visible. In this case, the tendency of Minecraft’s visual
aesthetic to reduce everything to kitsch actually helps to drive
home the ambivalent qualities of modernity we were trying to
capture.

[OUR MOLOCH SLIDE]

As a pedagogical tool, our Moloch was designed to accomplish two
tasks, both of which stem directly from the name’s historical
connotations. The first was to serve as an introductory tutorial
to the game; students are divided into groups and each group
receives their own Moloch monument. The second was to try and
provide a solution to the overproduction that is an inevitable
part of Minecraft play. I'll talk about each of these functions
briefly.

[MOLOCH TASKBOOK SLIDE]

Moloch is as much a blank parody of educational technology as it
is an allegory for it. We use the term “blank parody” because

6

Moloch actually does perform a useful task in that it teaches
our students some of the basic techniques for modded Minecraft
play (which can differ substantially from vanilla procedures).
And reciprocally, it taught the people on the research side of
this class something about mod-making and educational design; we
have, in fact, since released it as a legitimate mod. But we
designed it to look and act like an evil industrial demon in
part because of our deep and abiding concerns about many of the
things that ed tech may bring about, including an increasingly
depersonalized classroom, and the further de-skilling and
commercialization of higher education personnel.

Some of our students bothered to ask why they had to listen to
Moloch at all, and the truth is, they could completely ignore
it. In the first class where we used Moloch, not meeting
Moloch's demands for excess commodities produced by the group
triggered a mod called "Bloodmoon" (https://www.curseforge.com/
minecraft/mc-mods/bloodmoon), in which nighttime monsters spawn
faster, closer to the players and in greater numbers than usual.

[BLOODMOON SLIDE]

Because many players relish combat as a challenge, this wasn't
much of a punishment. With some students, the newfound discovery
that it was possible to simply ignore Moloch's demands (and
experience the thrill of a bloodmoon) became an opportunity to
discuss the workings of ideology, which could easily become part
of the general course curriculum. But we had something else in
mind.

[MOLOCH HEART INTERFACE SLIDE]

Moloch’s other, primary purpose was to help us manage
overproduction. One of the problems with Minecraft in terms of
game design is that by late game, players have typically

7

automated their builds to such an extent that what they end up
doing is sitting back and relaxing as their inventories mount.
But what we wondered was if we could build something that would
embody what modern artist and philosopher Georges Bataille
called "the general economy": the principle of waste,
expenditure, sacrifice, circulation and loss that coexists with
the regular, "restricted" economy based on savings and profit
(and, by some accounts, may even make the restricted economy
possible). Could we build something rapacious enough to act as a
kind of entropic balance to the game's tendency to
overproduction and achieve a kind of late game-balance? The
short answer is, No. The longer answer constitutes the bulk of
this talk ... and has a lot to do with *bees*.

The TAG Minecraft Bloc has been playing and researching modded
Minecraft since 2014, and I've been teaching a version of this
class since that same year. But the winter 2021 session of our
course, during lockdown, was the first time we had used anything
other than the vanilla version in the classroom. The modpack we
built for this class was deliberately small, and we thought we
understood the capabilities of the mods in it fairly well. There
was of course, one fatal exception, which totally exceeded the
modest scale we had anticipated for in-game production in this
class: the bees.

The Bees
[INNOCENT BEE SLIDE]

Bees of various sorts have been in Minecraft for years now, as
part of mods like Forestry, Extra Bees, Buzzy Bees and Magic
Bees. Bees were added into the vanilla version of Minecraft Java
addition on December 10, 2019, as part of Minecraft 1.15. So
when my collaborators on this project (Bart Simon and Nic
Watson) said they were adding bees to the pack (Productive Bees,
it turned out), I thought, "Oh, nice, We've had bees before.

8

This is a great way to allegorize Mendelian genetics and Punnett
squares and all of that haute-bourgeois science stuff from early
modernity." I had no idea what was coming.

[SMALL BEE FARM FROM AIR]

During my regular check-in flights around the map, I would often
pass over the bases of various teams and look down at the little
rows of glass houses over the beehives. This was also a lesson
for me in the drastic difference between the strategic view from
overhead and the tactical view on the ground (a difference that
I regularly teach via Michel De Certeau's "Walking in the
City"). If I had ever bothered to land and see what was going on
underneath those little glass houses, it would have saved me a
real shock later.

But looking down at the tidy apiaries, once again, I thought,
"Nice." I knew the domesticated Productive Bees were making
honey that could be refined into blocks of relatively rare
resources by the players. But in most Minecraft mods, the bees
eventually die off and have to be replaced. So while there is a
benefit to becoming a beekeeper, it's a lot of work to keep your
hive stocked. But for the student groups, who had by this point
outlined several hugely ambitious term projects that would
require them to produce and process vast amounts of raw
materials, any possible advantage was worth investigating.

One of the sets of techniques the students in this particular
class learned early and learned had to do with online
collaboration. By January 23rd, 2021, one student had posted a
Google Doc containing what they had learned about beekeeping in
a place where the whole class could access it. On February 2,
Nic Watson posted an apparently innocent question in the course
team's chat: "I wonder if anyone will abandon traditional mining
and just start using productive bees for everything."

9

I still wasn't paying close enough attention.

On February 20th, a beekeeper in another group wrote in their
channel, "Want to set up an auto sorting for the beehives now so
that you aren't taking from beehives"? Another member of the
same group wrote, "All right, if you believe in your bees, I'm
open to the killing machine." When the first sketches for the
aforementioned machine appeared in their channel, I thought,
"Interesting." (Still not paying attention). On February 21st,
the first student in this group replied, "There is a very
particular artistic touch to building massive bee farms that are
fully automated." I decided to investigate; that last part --
"fully automated" -- set off my spider-sense.

[BEE TOWER SLIDE]

The first picture of the completed auto sorting hive system --
which I eventually started thinking of as the Bee Machine --
arrived in the Discord on the 22nd. It appeared to be an
enormous hexagonal building with a single thin, very tall glass
tower on one side. I went out to see it the next day. It was a
long trip because it was well removed from the area around
spawn.

[BEE TOWER MAP LOCATION SLIDE]

The first time I walked up to the Bee Machine, activating the
devices and entities inside, the entire class server crashed. At
the time, I thought it was a coincidence. (Not paying
attention.)

[BEE TOWER INSIDE 1,2,3]

There is nothing modern about the design of the Bee Machine.

10

It's not postmodern either. It's a "machine landscape" that
vaults directly over the postmodern into what cultural theorist
Liam Young calls "architectures of the post-Anthropocene" In the
January, February 2019 issue of _Architectural Design_ magazine.

[MACHINE LANDSCAPES SLIDE]

Machine landscapes are places that demonstrate bluntly that
capitalism really doesn't need humans except as the most frail
and dispensable of components. Amazon warehouses, roboticized
container shipyards, data centres, Bitcoin mines, and wind
farms: All such places function with only a handful of human
operators. All the Bee Machine needed to function was one player
present somewhere in the same chunk, away from the keyboard.

Our Moloch, modelled closely on Lang's, with its bricks and its
glowing eyes and wires and sooty chimneys and infernal mouth,
was designed to shock modern audiences into action almost a
hundred years ago. The Bee Machine (which a classmate dubbed
"the Bee Gulag" on April 3) makes Moloch look puny and
insignificant by comparison.

[BEE FARM LOOT SLIDE]

When I got inside and saw the endless streams of valuable
resources falling down chutes and passing along conveyor belts
and then found the storage drawers into which they were sorted,
I began to wonder if it had something to do with the server
crash. At that time, around March, they were probably 15,000
diamonds alone in the Bee Machine storage system. I began to get
the terrible feeling that I had missed something, and flew
straight to what I thought was a *smaller* bee farm closer to
the centre of the game.

[DREADED DRAWERS SLIDE]

11

One of the first things I saw was as sign that could have been
written specifically for me. "Don't be daunted by the dreaded
drawers," it said. When I looked in the diamond drawer, there
were twice as many diamonds as in the Bee Machine, produced by a
vast factory subterranean that automatically sorted and
processed the output of the bees.

[SMALL BEE FARM LOOT SLIDE]

I had missed it because the entire, unbelievably efficient
contraption was underground, powered by an enormous array of
uranium-fueled, ice-cooled Thermoelectric Generators fueled with
uranium (all of this comes from a mod called Immersive
Engineering).

[SMALL BEE FARM POWER SLIDE, CENTRIFUGE SLIDE]

Only the quaint little glass bee enclosures above it were
visible from the air. It was a completely different design than
the Bee Machine, but equally posthuman.

I sat there for a long time and watched the game play itself.

While I was trying to figure out what it all meant, I went back
to Young's machine landscapes issue. Again, there was something
nagging me, and then, there it was: Bitcoin mining.

[BITCOIN FARM SLIDE]

The bee farms are utterly a product of our current culture
because they are formally identical to the way a Bitcoin farm
operates. You take a basic unit -- a cell phone, a cheap rack-
mount PC with a big graphics card, or a pod with a bee and a
full baby bee upgrade, which gives a 20 percent chance of

12

spawning a new bee. Such a hive fills fast. When there are 10 to
12 bees, you put in your desired combination of production and
time upgrades and you arrange them spatially in an array. What
such machines do is blackbox the labour and the infrastructure
they require to function in order to chase the dream of
effortless profit.

Bitcoin farms are both fascinating and pernicious because they
provide the appearance of generating wealth at no cost. There
only appears to be no cost if you don't pay attention to
infrastructure and public goods like roads, the electrical grid,
the phone system, and so on. But by February 10th 2019, the BBC
was reporting that researchers at Cambridge had found that
Bitcoin mining consumes around a 121.36 terawatt hours a year,
more than the entire country of Argentina. Because, as David
Gerard notes, Bitcoin mining is grotesquely inefficient, its
energy use and CO2 production will continue to spiral outward.

There's a lot to consider here. The bee farms produced a level
of wealth that is commonly seen only from contraptions created
by YouTubers working in creative mode. This isn't so much
capitalist excess as it is wealth generation as entertainment.
Bart and I began to wonder (after thinkers like Mackenzie Wark
and Mark Fisher): are these even the procedures of capitalism
anymore? There was no deficit. There was massive inequality
across the server. But it's not like anyone really *wanted*
anything in-game, because all of the beekeepers were extremely
generous with their wealth, and everyone had too much anyway.

But the real inequities weren't on the Symbolic level; they were
ethical. That is, they had nothing to do with the treatment of
the virtual bees, or with who had more imaginary diamonds and
emeralds in their imaginary house. The problems were ethical
because they concerned material, interpersonal relations between
students as citizens of the server, and had everything to do

13

with the use of real infrastructural resources.

By April 2nd, Nic Watson had discovered that the server's block
tag registry was taking up a whopping up 2.6 gigabytes of space.
(This is at least an order of magnitude larger than it should
be; a vanilla tag registry, which tracks every object currently
in the game, is a few megabytes in size; a modded one maybe
double the size of a vanilla registry.) How was that even
possible?

Two days later, after some forensic work, Nic added, "So the
bees are just polluting the tag registry as they fly around,
deciding where to go next," and then, on the same day, "So this
is even better than I could have imagined. This is literally the
bees' decision-making processes, their brainwaves disrupting the
servers, computational processes and the players activities and
machines and so on." What was happening that as the bees flew
around inside the Bee Machine tagging each separate flower, the
registry ballooned in size because each sensed flower produced
another registry entry. (That is, it's a result of poor amateur
coding -- of rattletrap platforms) One of the students summed it
all up nicely: "So we're pioneers in using bees to blow
everything up."

The point of all this is that server crashes and slowdowns have
real material consequences for students, who already have an
asymmetrical experience because of the different hardware
configurations they use to access the game. Who was able to log
on and play, and who couldn't complete their work because the
server was chugging under the increasing load created by the
other groups' bees became a literal class issue. The in-game
infrastructure created by the most ambitious student groups was
adversely affecting the infrastructure for the entire game
world, making it difficult for student groups with more modest
projects to complete their term work. But building close to

14

other players so you can take advantage of their being on the
server when you are not in order to keep your factory loaded
into active memory -- and functioning -- is yet another form of
infrastructural reflexivity. In yet a third scenario, playing
late at night (when fewer other players are on) in order to
inconvenience fewer classmates with the lag that your machines
cause is a not just allegorical reflexivity; it also becomes an
allegory of shift work.

Once the students began to realize that they, themselves, were
the cause of the problem -- that is, they reached the moment of
infrastructural reflexivity -- their grumbling about "quality of
service" began to drop off drastically. When I went back through
the chat logs, it became obvious in retrospect that some of them
had suspected the bees affected game infrastructure all along.
On February 11th, one of our more active beekeeper students
posted the following in one of the public channels: "Also the
bees sometimes strain the server a little". On the same day, Nic
replied, in jest (he thought), "Yep. Your bee farm is ruining
everything." Understatement and humour disguised the nature and
extent of the problem for another month and a half.

After our early April revelations about our slow but ongoing
infrastructural disaster, the teaching and research team began
discussing the bees heavily in our private channels. The
students had pushed the server to the point that it was crashing
regularly and we had to reset it daily. But this is exactly the
kind of thing that we hope will happen when we set up a modded
server: emergent behaviour that takes us somewhere completely
unexpected. We had no intention of fixing the situation as long
as we could ensure that the bee-heavy server would survive until
the end of the term and everyone could complete their work ...
while becoming aware of exactly why it was now more difficult to
do that work, even if the bees provided the necessary resources
to do so.

15

Reflections/Conclusion
[ENDERMAN 13 SLIDE]

We want you to notice a few things about our story here -- the
mix between the fantastic fictional world of our Minecraft
classroom; readings on the technology and culture of modernity;
the technical operation of the server (along with the skill of
the sysop, Nic Watson) that makes the world possible; and our
students' thoughts and actions. Most educational software
borrows from the the conceit that technical operations need to
be black-boxed for the student. Good user design is, in Donald
Norman's sense, uncomplicated. A program for learning about
geography or math or modernity should be about geography or math
or modernity, not programming or systems architecture. Yet, our
breakable and broken server becomes more than just a teachable
moment. It's more subtle than that... slowly, methodologically,
(and occasionally abruptly and alarmingly) alerting students
(who have been primed by the course material) to the material
and infrastructural conditions that makes their ideas, actions
and learning possible. This is not about Minecraft; this is
about the digital culture in which we all live. It is the
pedagogical thread that links Minecraft to Bitcoin to Zoom to
the Metaverse.

[THEO'S CLASS SLIDE]

Digital learning must be about learning what the digital *is*;
otherwise, it's just about consumption (and "education as
service"). Software is never invisible and it never should be,
but that presents ed tech designers with a new and more
interesting problem: how to make usable broken things. Our
digital classroom is broken, but it works. Glitches, lag and
crashes are instructive when they are temporary and addressable
by students. The system must work well enough to trouble the

16

notion of what "well enough" means. Anything less and the
students will not have a chance to discover anything; anything
more and they will have no need to discover anything because all
their needs are being met ... which is consuming, not learning.
(All of this requires substantial infrastructural resources to
run the class, but that's a detailed topic for another time.)

The story of the bees eventually gives way to new in-game
practices as students begin to understand the relation between
the Productive Bee mod's impact on the server and other factors,
including their ability to complete their homework. While it was
up to Nic to engineer the server to keep the class going (so the
students could complete their projects and get their grades
etc ...) the ideal classroom would have the students probing,
testing and modifying the conditions of their own experience ...
and collectively at that. When infrastructural reflexivity takes
hold, the game becomes, in part, a metagame (in Stephanie Boluk
and Patrick Lemieux's sense) of testing the conditions under
which the game is even possible, as students attempt to discover
"the diverse practices and material discontinuities that emerge
between the human experience of playing video games and their
nonhuman operations" (Introduction).

In other words, infrastructural reflexivity is almost the
antithesis of gamification. It doesn't wrap educational subject
matter in features plucked from games to make it more
attractive. Instead, infrastructural reflexivity draws attention
away from the symbolic elements of game and classroom alike,
focusing on the conditions of their possibility. What could
otherwise be an annoying or frustrating impediment to learning
suddenly becomes the focus around which learning occurs;
infrastructural reflexivity puts the glitch to work.

As one result of this realization, creating some degree of
infrastructural reflexivity in students is now an explicit

17

learning outcome of the course. In order to get to that outcome,
though, we have to count on our platforms to continue to break
down in new and unanticipated ways.

